Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore.

نویسندگان

  • Alexander A Sobko
  • Elena A Kotova
  • Yuri N Antonenko
  • Stanislav D Zakharov
  • William A Cramer
چکیده

Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore.

The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore-forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature-modulating agents. In particular, the colicin-induced trans-membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting...

متن کامل

On the role of lipid in colicin pore formation.

Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel fo...

متن کامل

Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling.

Helix 1 of the membrane-associated closed state of the colicin E1 channel domain was studied by site-directed fluorescence labeling where bimane was covalently attached to a single cysteine residue in each mutant protein. A number of fluorescence properties of the tethered bimane fluorophore were measured in the membrane-bound state of the channel domain, including fluorescence emission maximum...

متن کامل

Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.

Channel-forming colicins are bacterial toxins that spontaneously insert into the inner cell membrane of sensitive bacteria to form voltage-gated ion channels. It has been shown that the channel current and the conformational flexibility of colicin E1 channel domain depend on the membrane surface potential, which is regulated by the anionic lipid content and the ion concentration. To better unde...

متن کامل

Tryptophan-dependent sensitized photoinactivation of colicin E1 channels in bilayer lipid membranes.

The bacterial toxin colicin E1 is known to induce voltage-gated currents across a planar bilayer lipid membrane. In the present study, it is shown that the colicin-induced current decreased substantially upon illumination of the membrane in the presence of the photosensitizer, aluminum phthalocyanine. This effect was almost completely abolished by the singlet oxygen quencher, sodium azide. Usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 20  شماره 

صفحات  -

تاریخ انتشار 2006